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A B S T R A C T  

In this paper we complete the local non-archimedean theory of Rankin- 
Selberg convolutions for U(2, 1) that was suggested by S. Gelbart and 
I. Piatetski-Shapiro in [G,PS,1]. In addition, we prove two fundamental 
properties of the gamma factors (Theorem 6.3) which allow us to give a 
new proof of a strong multiplicity one theorem for U(2, 1). 

I n t r o d u c t i o n  

Let F be a p-adic field and E a quadratic extension of F.  Given a generic repre- 

sentation r of U(2, 1)(F) and a quasi-character X of E*, Gelbart  and Piatetski- 

Shapiro [G,PS,1] introduced a family of Zeta integrals which interpolate a degree 

6 L-function over F.  In this paper  we prove the absolute convergence of these 

integrals in a right half plane and we show tha t  they are rational functions in q~ 

where q f  is the order of the residue field of F (section 3). We prove the existence 

of a local gamma  and L-factors (section 4). We end the local theory with our 

main result, Theorem 6.3. We show that  a generic representation of U(2, 1) is 

determined by its central character and gamma factors. We also show that  two 

generic representations will have the same gamma factors if the quasi charac- 

ter X is highly ramified (sections 5 and 6). We end with a global application 

which is a new proof of a strong multiplicity one result due to Gelbart,  Rogawski 
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and Soudry [Rog], [G,R,S]. We also give the global functional equation which is 

implicit in [G,PS,1]. 

Most of the ideas here are inspired by [J], [G,PS,2], IS] and [HI. The second 

part of our main result is inspired by a similar unpublished result of Cogdell and 

Piatetski-Shapiro [C,PS]. I would like to thank Jim Cogdell for showing me his 

notes. 
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1. Notat ions  and preliminaries 

Let F be a nonarchimedean local field of characteristic 0. Let E be a quadratic 

extension of F and set E = F l y ' I ,  where e is a nonsquare in F. Let x --+ • be 

the Galois automorphism of E over F sending v ~ to - v  ~. For a local field L, 

we let RL and PL be the ring of integers and maximal ideal in L respectively. 

L e t  "i:~ L be a generator of PL. We denote by IXlL the normalized absolute value 

of x C L, and we let qL be the order of the residue class field of L. Let X be a 

quasi-character of L*. We say that  X is ramified of degree d if X(1 + PL d) ---- 1 and 

X(1 + P L  d- l )  ¢ 1. We set l (x  ) = d. We say that X is highly ramified if l(x) > >  0. 

Whenever we do not mention the local field then it is assumed to be E. For 

example, if x E F then Ixl -- IXlE. Let 

We define 

G -- U(2, 1)(F) -- (A  e GL3(E)IIA*JA -- J}  

where A* -- (A)t. 

We will consider the following subgroups of G. Let C be the center of G, B 

be the upper triangular Borel subgroup of G and U the unipotent radical of B. 

Then 

u = u(y,  z) = tlu(y, z) e v 
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Let 

0 i) } {(a0 r) 
H =  1 E G  , BH -~ 1 0 c H  

0 ~--1 

U H =  x ( r ) =  1 [ [ r • E , r + f = O  , 

( ( 1 )  } 
UH = ~(r )=  0 1 I l r • E , r + ~ - - 0  , 

r 0 1 

{ } T ~  = t (a)  = 1 Ila ~ E* 
~t -1  

Let K = GL3(RE) N G be a maximal compact subgroup of G and KH : K N H 

be a maximal compact subgroup of H. For a subgroup Q of GL2(E) we denote 

{ (ql10q12) } 
m(Q) = m(q) = 0 1 0 IIq= (qij)  • Q • 

q2,1 0 q2,2 

Thus H = re(U1,1). 

Let S ( H )  = {A e HIIdet(A ) = 1}. 

Let d(a, b) = diagonal (a, b) and d(a) = d(a, 1). 

Then S(H)  -~ SUI,I(F) ~ SL2(F) and this isomorphism can be realized 

through the following equality: 

S( H)  = m( d( v/-~) ) • m(SL2(F)) ,  m( d(1/ v/-~) ). 

Let ~b F be a a nontrivial character of F and CE be a nontrivial character of 

E. (In the global applications CF and CE will be related by the formula 

CE(x) = CF x -  ~ 

(see [G,PS,1]). It will be convenient for us to use this slightly more general 

situation.) We define a nondegenerate character ¢ on U by 

¢ ( u ( y ,  z)) = CE(y).  
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Let (r ,  V) be an irreducible admissible representation of G. We say that  7r is 

generic if there exists a nontrivial functional l: V --+ C such that: 

l(~(u)v) = ¢(u)l(v),  u • U, v • Y. 

It is well known that such a functional is unique up to scalar multiples. We 

call this functional the Whittaker functional. Now define 

Wv(g)=l(~(g)(v)), v • V ,  g • G  

and let G act on the space of these functions by right translations. Then the 

map v -+ Wv gives a realization of 7r on a space of functions satisfying 

w . ( u g )  = ¢ (u)W.(g) ,  • u, g • c .  

We denote this space by W(r ,  ¢). 

For a p-adic group G, a subgroup H and a character ) /o f  H,  we let Ind G X be 

the nonnormalized induced representation whose underlying space is the set of 

smooth functions f :  G --+ C satisfying 

f(hg) = x(h)f(g) for all h • H, g • G. 

We let G act on this space by right translations, 

(p(g')f)(g) = f(gg'),g,g' • G. 

2. Zeta integrals 

In this section we define some zeta integrals which are the main study of this 

paper. The definition of these integrals is sketched in [G,PS,1]. 

Let S ( F  2) be the space of locally constant, compactly supported functions on 

F 2. For (I) E S ( F  2) we define the Fourier transform 

(~(x, y) = / (~(u, V)¢F(yu -- xv)dudv. 

Let g e GL2(F).  Set (g~)(x, y) --- (I)[(x, y)g]. Then 

(2.1) (g(I)) ~-- Idet(g)]Flg'~ 
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where 
g ' = (  det(g)-I det(g)_l ) g. 

Let (I) E S(F2), s E C and X be a quasi-character of E*. Let g E GL2(F). As 

in ([Go,J], §14) we set 

(2.2) z(s, g, ~, X) = IF" (gO)(0, r)x(r)]rlSEd* r. 

Notice that here X is viewed as a quasi-character of F* by looking at the restric- 

tion to F*. The following Lemma is proved in [Go,J]: 

LEMMA 2.3: For a fixed X, z(s, g, ~, X) is defined by an absolutely convergent 

integral for Re(s) large enough, and by meromorphic continuation it can be 
defined for almost ali s. 

Using the Bruhat decomposition for H (or Hilbert's Satz 90), it is easy to see 

that each h E H can be written (not uniquely) in the form 

h= t(a)h, n e E * ,  h E S(H). 

Since h E S(H) we can write h = m(d(vq)).m(hl).m(d(1/x/~)) for hi E SL2(F), 

and we get 

(2.4) h = t(a). m(d(v~)), re(h1), m(d(1/v/~)), a E E*, hi e SL2(F). 

For h E H written in the form (2.4) we set 

f(s ,  h, 0, x) = X(a)lalSz(s, h1¢, X). 

LEMMA 2.5: The definition of f (s ,h ,¢ ,X)  is independent of the choice of 

decomposition (2.4) of h E H. 

Proo~ Choose two decompositions 

h = t(a). m(d(x/~)), re(h1)- m(d(1/V~)) = t(b). m(d(v~)), m(h~), m(d(1/V~)). 

We have hi = d(a-lb, ~b-1)hll, hence a-lb E F, hence d-lb = a-lb. Thus 

f ¢[(0, r)hl]X(r)lrlSEd*r x(a) la[~ 

=x(a) lal~ /" ~[(0, t)d(a-lb, ~tb-1)hll]X(r)]r[SEd* r 

=x(b)lbl  [ ¢[(0, r)h'l]X(r)lrl~d* r. | 
J 
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It is easy to see that  the function f defined by f(h) = f(s ,  h, ~, X) is an element 

of IndHn X]]8, where 

X[]S(t(a)u) = x(a)la[ s, a e E*, u e UH. 

LEMMA 2.6: Let y, h E H and write 

y = t(b)m(d(v~))m(yl)m(d(1/v~)), h = t(a)m(d(v~))m(hl)m(d(1/v/e)) 

where a,b • E*, y l ,h l  • SL2(F) as in (2.4). Then 

f(s ,  yh, ~, X) = x(a)[a[~f(s, Y, d(a~)hl~, X). 

Proo~ 

f(s ,  yh, ¢, X) = x(b)[bl~x(a)ta] ~ f [(t(a-1)ylt(a)hl(~)( O, r)]x(r)[r[SE d* r 

= x(b)[b]Sx(a)[al s ][(yld(aa)hl¢)(O, r)]x(r)]r[sE d* r 

= x(a)[a[Sf(s,y,d(af)hl~,X). | 

We are now in the position to define our main objects, the zeta integrals. 

(See [G,PS,1] (4.1).) 

Let (~r, V) be a generic representation of G with a Whittaker model 142(1r, ¢). 

For any W • )d;(~r, ¢) we define 

(2.7) Z(s, W, ¢, X) = f W(h)f(s ,  h, ~, x)dh. 
Ju H " H 

We shall address the convergence of these zeta integrals later. We shall also show 

that  there is a functional equation involving 

A ( s , W , O , x ) = Z ( s , W , O , X )  and A ( s , W , O , x ) = Z ( 1 - s , W , ~ , ~ ( - 1 )  

where ~(x) = X(2). For now, let us look at the invariance properties of these 

integrals. 

LEMMA 2.8: Let h • H, write 

h = t(a)m(d(v~)), re(h1), m(d(1/v~)), a • E*, hi • SL2(F) (see (2.4)). 
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Then 
A(s, 7r(h)W, d(aa)hffb, X) = X. - l ( a ) l a l - ~ A ( s ,  W, ~, X), 

A(s, lr(h) W, d(a~)hlO, X) = x-l(a)lal-SA( s, W, ~, X). 

Proof." Using Lemma 2.6 we can see that  

A(s, lr(h)W, d(aa)hl~, X) = Jv W(yh)f(s, y, d(ag)hl¢, x)dy 
H \ H  

i "  
= x - l ( a ) l a l  - s  I W(yh)f(s, yh, ¢, x)dy 

Ju H".H 

= x-l (a) lal-~A(s ,  W, ~, X). 

To prove the second equality we use (2.1) and Lemma 2.6 to see that  

f(1 - s, y, (d(aa)hl~y, £-1) = X-l(aa)la]l-28f(1 _ s, y, d(aa)hl(~, £-1)  

= x-X(a)lal-Sf(1 - s, yh, ¢, £-1). 

Hence 

~(s, r(h)W, d(a8)hl'~, £-1) = Jufu \ H W(yh)f(1 - s, y, (d(a~)hl¢)*, £-~)dy 

= x-z  (a)[al-S Iv  W(yh)f(1 - s, yh, ~, £- ldy  
1 4 \ H  

= X-a(a) la l -S~(s ,W,¢,X) .  m 

3. C o n v e r g e n c e  o f  t h e  in tegra ls  

Let W be a Whittaker function on G. Thus W: G -4 C is smooth on the right 

and satisfies 

w ( ~ g )  = ¢ ( ~ ) w ( 9 ) ,  ~ e u,  g e G. 

LEMMA 3.1: The function a --+ W(t(a)) has bounded support in E. 

Proof." Choose y • E with [y[ small enough, so that  W(gu(y,-y#/2)) = W(g) 
for all g • G. We have 

W(t(a)) = W(t(a)u(y,-y#/2)) = W(t(a)u(y,-y,3/2)t(a)-lt(a)) 

= ¢ ( a y ) W ( t ( a ) ) .  

Thus, for a to be in the support, we must have ¢(ay) = 1 for all small y. This 

implies that  [a[ is bounded. | 

Let lr be an irreducible admissible representation of G acting by right 

translations on a space of Whittaker functions YY(r,¢). We have the follow- 

ing analogue to Proposition 2.2 in [J,PS,S 1]. 
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PROPOSITION 3.2: There is a finite set A of finite functions on E*, such that for 

any W in V~(lr, ¢) there exist, for every a • A, Schwartz [unctions ¢~ • S (F)  

satisfying 

W(t(a))  = Z Ca(a)a(a), a • E*. 
s E A  

Proof: The proof is a repetition of that of Proposition 2.2 in [J,PS,S 1]. Let 

)4;' = Span{r(u)W - W: u • U, W • •(7r,¢)}. 

As in the proof of Lemma 3.1, we see that for W 6 W' ,  W(t(a))  = 0 for [at small 

(and for [a[ large). Since the representation lr' of B on )4;(~r, ¢)/)4)' is finite 

dimensional we have that  Span{lr'(t(a)): a • E*} is finite dimensional. Now we 

are at the situation of the end of the proof of Proposition 2.2 in [J,PS,S 1]. | 

We define a gauge on G to be a function ~ of the form 

~ ( u . c . t ( a ) . k ) = a ( a ) ¢ ( a )  

where a 6 E*, u 6 U, c 6 C (the center of G), k 6 K (the standard maximal 

compact of G), a is a sum of positive characters and ¢ is a nonnegative element 

of S(E) .  Clearly a sum of gauges is majorized by a gauge and since the center 

of G is compact, Proposition 3.2 implies (as in Proposition 2.3.5 in [J,PS,S 1]) 

PROPOSITION 3.3: For every W 6 W(~r, ¢) there is a gauge ~ on G such that 

]W(g)t ~_ ~(g), g e G. 

PROPOSITION 3.4: Let X be a quasi-character of E*. There is So 6 R such that 

the integral 

Z(s,  W, ~ ,X)  = f W ( h ) f ( s ,  h, ¢ , x )dh ,  W 6 W ( v , ¢ ) ,  (I) 6 S(F)  
Ju Hx.H 

converges absolutely [or Re(s) > So. Moreover, as a [unction of s it is a rational 

[unction in qF s and hence can be meromorphicatly continued to the whole plane. 

Proof'. Let KH be the maximal compact of H and we use the Iwasawa 

decomposition H = UHTHKH to compute our integral. We have 

z(s,w, 
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Using a gauge for W as in Proposition 3.3 and the fact that  

f ( s , t (a)k ,~ ,X)=x(a) la lS f (s ,k ,  fp, X), aEE* ,  k E K H ,  

we can see that  this integral is majorized by a sum of integrals of the form 

(3.5) E. a(a)x(a)¢(a)iaiSd* a 

where 0 <_ ¢ E S(E) and ~ is a sum of positive characters. This integral converges 

for Re(s) large (depending only on the characters which decompose c~ and on X)- 

Furthermore, we can see that  if we use Proposition 3.2 instead of Proposition 3.3 

we get that  Z(s, W, ~, X) is a finite linear combination of integrals of the form 

(3.5) where ¢ E S(E), not necessarily positive and c~ a finite function on E*. 

The integral (3.5) in this case is easily seen to be a rational function in q~ when 

it converges. I 

4. The functional equation 

In this section we prove that  the space of bilinear forms satisfying the equivari- 

ance properties of Lemma 2.7 is in general one dimensional. We follow here the 

methods of [J] and [G,PS,2]. 

Consider the subgroup Bo = {t(a)uila E E, u E U} of B. UH, the center of U, 

is a normal subgroup in B, hence in B0, and we have 

UH \ Bo -~ P2 = P2(E) 

where 

Let Z2 c P2 be the subgroup 

b) } 
1 I l a E E * ' b E E  " 

Since ¢ is trivial on UH, ¢ induces a character on UH \ U "~ Z2 which we again 

denote by ¢. This character is given by 

¢ ( z ( b ) )  = 
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Let BSL be the Borel subgroup of SL2(F) and let X be a quasicharacter of E*. 

Let Xt[ s be a quasi-character of BSL or of BH defined by 

XllS(b) = X(bl,1)lblAlSE, b = (bi,j). 

For every f E IndSLs[ (F) Xil s, we define ] E Ind H" XI[ 8 by 

](h) = x(a)lalSf(hl)  

where h E H and h = t (a) .  m ( d ( v ~  ) • re(h1), m(d(1/x/~)) ,a E E*,h l  e SL2(F), 

as in (2.4). It is easy to see that ] is well defined. Moreover, i f p  E IndHH XI] 8 

we can find an f E IndSL~ (F) X[I ~ such that p = ]. To do that we define 

f (g)  = p(m(d(x/~- l ) )  • m(g) . m(d(x/~))), g E SL2(F). 

Hence we have 

LEMMA 4.1: The mapping f ~ ] gives a bijection between IndSL~ (f) X[[ s and 

IndH• X]I s. 

LEMMA 4.2: There N So e R such that for every s with Re(s) > so and every 

f E Indg~ X[[ s there exist • E S (F  2) such that 

f ( s , h ,  ~ , x )  = f (h )  for all h E H. 

Proof." It follows from the proof of Proposition 3.2 of [J,L] that  if Re(s) is large 

enough, then every f E IndSL[ (F) X[[ s is of the form 

f (h )  = / ( h ~ ) ( O ,  r)x(r)[r[~d* r 

for some ~5 E S(F2).  Our Lemma now follows from Lemma 4.1. | 

LEMMA 4.3 ([J] Lemma 14.7.1): There is so in R so that for all s with Re(s) > so 

and all • e S(F2), the relation 

z(s, g, ¢, X) = 0 for all g E GL2(F) 

implies the relation 

z(1 - s , g , ~ , X  -1) = 0 for all g E GL2(F). 

It is clear from the proof of Lemma 14.7.1 in [J] that  the same holds if we 

replace GL2(F) with SL2(F) in the statement of Lemma 4.3. Thus we get the 

following Corollary. 
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LEMMA 4.4: There is so E R so that for aI1 s with Re(s) > So, if f (s, h, eb, X) = 0 

for a11 h E H then f(1 - s, h, (~, :~-1) = 0 for ali h E H. 

Let (~r, V) be a generic representation of G with Whittaker model W(Tr, ¢). 

Combining Lemma 4.2, Lemma 4.4 and Lemma 2.8, we get 

LEMMA 4.5: There is so E R so that for Re(s) > So, there are unique bilinear 

forms j3~ and ~ on W(lr, ¢) x IndBH~ X[[ s, such that if f is the function defined 

by f ( h )  = f ( s ,  h, d), X), we have 

13s(W,f) = Z( s ,W,  cb, X) for all W E W(Tr,¢) and a11~ E S ( F  2) 

and 

/ ~ ' s ( W , f ) - - - Z ( 1 - s , W , ~ , f ( - 1 )  f o r a 1 1 W E ) , V ( I r , ¢ ) a n d a l l ~ E S ( F 2 ) .  

Moreover, it follows from Lemma 2.8 that ~s and fl's satisfy the following 

invariance property. 

&(Tr(h)W, p(h) f )  = fls(W, f) ,  
(4.6) 

f o r a l l W E W ( n , ¢ ) ,  f E I n d H n x i [  ~, h E H  

where (p(h) f ) (g)  = f (gh) .  By  analytic continuation, this formula is true for 

almost all s. 

We are now in the position to prove our uniqueness Theorem. (See Theorem 

7.1 of [G,PS,2].) 

THEOREM 4.7: Let B~ be the space of bilinear forms on W(Tr,¢) x IndHx XII ~ 

satisfying (4.6). Then outside a finite number of values of qS, Bs is one dimen- 

sional. 

Proof'. Recall that  for any pair of smooth representations ~rl, ~r2 of a p-adic 

group H,  the vector space of H-invariant forms on V, u x V, 2 is isomorphic to 

HomH(~q, #2), where ~2 is the contragredient representation to ~r2. Hence 

B s ~  (V,I d H -111 = HomH n n X 

where V = V~. By the Frobenius reciprocity theorem 

HomH(V, IndHn X-Ill l-s) ~ HomTn(VU~,x-llll-s), 
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where V Un is the Jacquet module, V vn = V/V(UH),  and 

V(UH) = Span{Tr(x)v - vl]v • V,.x • UH}. 

Since Bo normalizes UH and UH ". Bo ~- P2, we have that P2 acts on V Un . Let 

v V n ( z 2 )  = Span{lr(z)v - v l I v  e v V n , z  • Z2}. 

We claim that  V U",z~ = v u H / v U ~  (Z2) is a finite-dimensional P2 module and 

that  vUH(z2) is irreducible as a P2 module and is isomorphic to indP~ ¢.  (Here 

ind is the compactly supported induction.) 

Since vUH/vUH(z2)  ~- V v where V U is the standard Jacquet module of V 

with respect to the unipotent radical U, we immediately get that V vH,Z2 is finite 

dimensional. To prove the second part of the claim we first look at the twisted 

Jacquet functor used in [BZ]. Let 

V u" (zz, ¢ )  = S p a n { ~ ( z ) v  - ¢(z)vllv e VU ' , z  e Z2}. 

Let D = v U n / v U n ( z ~ , ¢ ) .  D is a Z2 module with the action rc(z)d = ¢(z)d  

for all d E D and z E Z2. We claim that D is one dimensional. Since the 

Whittaker functional vanishes on V(UH), it defines a nonzero functional on V U~ . 

Since this functional vanishes on VUn(Z2,~,), it defines a nonzero functional 

on D, hence D ~ 0. Now assume that dim(D) > 1. Then there exist two 

linearly independent functionals 11 and 12 on D. ll and 12 induce two independent 

Whittaker functionals on V which is a contradiction to 7r being irreducible. Hence 

D is one dimensional. By the theory of Bernstein and Zelevinski [BZ] there is an 

exact sequence of P2 modules 

0 --+ indP~ D --+ V Un --+ V v~ ". VUn(Z2) -+ 0 

where the third arrow is the natural map to the quotient space. Hence V Ut~ (Z2) 
e~a" P2 = mdz2 D as a P2 module, and our claim is proved. 

We now would like to show that HomTn (V Un, X-111 l -s )  is one dimemsional 

outside a finite number of values of qS. By [J,L] we know that 

dim(HomTH (IndzP~ ¢, X-ill 1-~)) = 1 
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for all ramified quasi-characters X of E*. If X is unramified then the dimension 

is one for all but  one value of qL Let dim(V Us'z2) = r. There exist r quasi- 

characters of E*, X1,--- ,  X~, and a sequence of TH submodules of V U~ 

v U " ( z ~ )  = Wo c w ,  c . . .  c w, .  = v u "  

such that  W i \ W i _ l ,  i = 1 , . . . , r ,  is one dimensional and that  TH acts on 

Wi \ Wi-1 as the character Xi, i = 1 , . . . , r .  We claim that  if s is such that  

X-l]] 1-8 ¢ Xi, i = 1 , . . . , r ,  then given an element of HOmTH(VUH(Z2),~II s) 

there is at most one way to extend it to an element of HomTz (V UH , ~(]18). 

To show that,  let L C HomTH(Wi_I,X-1111-8) for some fixed i, 0 < i < r. Let 

L'  be an extension of L to HomTz(Wi,x-1]]I-8) .  Let v E Wi, v ff Wi-1.  Since 

Wi/Wi+l  is one dimensional and TH acts on this quotient with the character Xi 

we have that  

~(t )v  = x~(t)v + w~, for all t c T~ 

where wt E Wi-1. Hence 

L'(Tr(t)v) = x-1l l l -8( t )L ' (v)  = xi ( t )L ' (v)  + L(wt)  

so L'(v) is determined by L if X-~[[ 1-8 ¢ Xi. 

Thus, for such s for which X-11[ 8 ~ x i , i  = 1 , . . . , r ,  we have that  

HomT,(VUn,x-1111-8)  is at most one dimensional. It is also possible to show 

that  we can always extend an element of HOmTH (V Us (Z2), X-111 l - s )  to an ele- 

ment of SomTH (Y  UH , X-1111-~). However, we will derive our Theorem by show- 

ing tha t  our zeta integrals do not vanish identically. We postpone tha t  to Section 

6 (cf. (6.5)). . 

COROLLARY 4.8: There is a rational function in qF s, 3'(s, r ,  X,-¢F, CE) such that 

3'(8, ~, x, CF, CE)z(8, w, ¢, x) = z (1  - s, w,  4,  ~-1) .  

When CF and ~)E are linked, as in the global application, we shall denote it 

by 
3'(8, ~, x, ¢) : 3"(8,~,x,¢r,¢~). 

We will later use a particular choice for ¢~  and CF. Thus, it is important  for us 

to know how the 3,-factor 3'(s, r ,  X, CF, CE) changes when we change C f  and CE. 



330 E.M. BARUCH Isr. J. Math. 

I LEMMA 4.9: Let 5 • E* and let CE(x) = CE(hx). Then 

~(s,-, x, Cr, ¢~) = x ( 5 ~ - l ) l ~ l : ~ - ~ ( ~ , - ,  x, ~r ,  ~) .  

Proof: The Whittaker model of (lr, V) with respect to the character ¢~ is given 

by 
v --+ W t(~) 

where Wt(~)(g) = W,(t(5)g) for all g • G. We have 

W(t(5)h)f(s, h, ~, x)dh Z(s, W t(~), ~, X) = I v ,  .. H 

= Iv  W(h)f(s' t(5-1)h'(~'x)dh 
H \ H  

= x - l ( 5 ) i h i - s z ( s ,  w, ¢, x). 

Similarly, we have 

Z(1 - s, W t(6), 4 ,  ~ - a )  _= X(~) i5 is - lz (1  _ s, W, (~, ~:-1). 

Using the functional equations for "y(s, 7r, X, ~bg, CE) and 5'(s, n, X, e l ,  ¢~)  we get 

our result. | 

LEMMA 4.10: Let 5 • F* and let ¢~(x) = CF(hX). Then 

~(s, ~, x, ¢~ ,  CE) = x(~)l~l~-l~(~, ~, x, CF, CE). 

Proo~ For (I) • S (F  2) we define another Fourier transform 

~(x, y) = / ~2(u, v)¢~(yu - xv)dudv. 

We have that  ~) = diag(5, 5)(~, hence 

f(1 - s, h, (~, X) = X(5)lhls-l/( 1 - s, h, (~, X). 

Using the functional equations for 7(s, It, X, e l ,  CE) and 7(s, r ,  X, ¢~, CE) we get 

our result. | 

It follows from Lemma 4.9 that the set of poles of the rational functions 

Z(s, W, (~, X) is independent of the choice of CE. Moreover, when we vary the 

character CE and look at the subspace I~,x of C(q -8) defined by 

I~,× = Span{Z(s, W, (~, x)HIW • VI2(77, ¢), ¢ nontrivial} 
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we can see that  I,,x is closed under multiplication by qS and q-% hence is a 

fractional ideal. It will follow from (6.5) that  I,~,x is generated by a function of 

the form 1/P(q -~) where P(x) is a polynomial such that P(0) = 1. We define 

the L-factor L(s, ~r, X) to be 

1 
(4.11) L(s'~r'X) - t'( q-~'" 

We define the e-factor e(s, ~r, X, ~bF, ~bE) to be 

(4.12) 
L(s, 7r, X) 

e(s, ~, x, CF, CE) = ~(S, ~, X, CF, C n ) L ( / :  s i~,~- 1) - 

5. H o w e  v e c t o r s  

In this section we attach to each generic representation (~r, V) of G a sequence 

of vectors Vm C V, and study their properties. (See [H].) 

From now on we shall assume that •F(RF)  ---- 1 and CF(~F1RF) ~ 1 and that  

~)E(RE) ---- 1 and CE(VaE1RE) ¢ 1. 

Let /~m C GL3(E) be a congruence subgroup defined by/~m = 1 + Ma(pm), 

where M3(P m) is the set of 3 x 3 matrices with entries in the ring pro. Let 

= K r o N a .  Set 

dm= 1 . 

Let J~  = d~K~d~  1. Let /) be the subgroup of lower triangular matrices in 

G, and U C /)  be the subgroup of lower unipotent matrices in G. It is clear 

that  any matrix in/~,~ (hence in K ~  and J~)  can be decomposed uniquely into 

a product of an upper unipotent matrix and a lower triangular matrix. The 

following Lemma is a consequence of the formulas for this decomposition. 

LEMMA 5.1 ([Rod], Lemma 1): 

Km= (uNK )(BNKm) J., = (uNJm)(,NJ ) 
with uniqueness of expression. 

Let Tm be a character of Km defined by 

---- ~)E(VO E kl,2 ) for all k = (kij) 6 Kin. 
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It is easy to see that  rm is indeed a character. We define characters Cm on Jm 

by 

era(J) = ~'m(dmljdm), J E Jm. 

It is easy to see that  

~bm(j) = CE(jl,2) for all j = (ji,l) e jm. 

Hence Cm and ¢ agree on Jm [~ U. 

Let (~r, V) be a generic representation of G with Whittaker model 14;(7r, ¢). 

Let v C V be such that  l(v) = Wv(1) = 1, where I is a Whittaker functional 

associated to (Tr, V) (cf. end of Section 1). Let U m =  Jr~ N U and du a Haar 

measure on U. For m > 1 define 

(5.3) Vm = vol(Vm) -1 f .  ¢(u) - '~r (u)vdu .  
J U  r n  

LEMMA 5.2: Let  N be such that  7r(Kg)v = v. Then we have: 

(1) Wvm(1) = 1. 

(2) For .~ > N,  ~(j)v.~ = Cm(j)v.~ for ali j ~ J.~. 

(3) I f  k > m then vm = vol(Um) -1 rum ¢(u)-l~(u) vkdu 

Proof: (1) and (3) are clear. To prove (2), let d/~ be a right invariant Haar 

measure on/~.  Using Lemma 5.1, we can see that  dj = dbdu is a Haar measure 

on Jm. For m > N define 

~m = vol(Jm) -1 fJm Cm(J)-l~r(j)vdu" 

It is clear that  ~,~ satisfies (2). Since ~r(Km)v = v for m > N, and since 

/ ) ~ J m  C Km, we have that,  for m 2 N, 

v ' ~ =  v° l (Um)- lv° l ( / )N  J m ) - i / v , ~ / ~ N J , ~  Cm(u)-l~r(u)~r(~)vd~du 

= v°l(Um)-I/v,~ ¢(u) - l~r (u )vdu  = Vm. | 

We call vm, m > N the Howe vectors associated to v. We suspect that  vm 

are independent of v and are determined uniquely by properties (1) and (2) of 

Lemma 5.2. This is true for GL,~ [HI. However, we only need their existence for 

our purpose and the proof of existence (Lemma 5.2) generalizes to a large class 

of quasi-split reductive groups [B]. 
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LEMMA 5.4: Let vm, m >_ N, be Howe vectors as in Lemma 5.2 and let Wvm be 

the Whittaker functions associated to v,~. Then 

Proof 

1 if a E 1 + P'n, 
o otherwise. 

If ]y] < qm then u(y , -y~ /2)  E Jm and we have 

u(ay, a~yfl/2)t(a) = t(a)u(y, -yfl/2).  

Thus we have 

( t ( a ) )  = = ( t ( a ) ) .  

Since ¢ has conductor RE we get that  W~m(t(a)) = 0 i f a  • I + P  m. I f a  E I + P  m 

then t(a) E Jm and our result follows from Lemma 5.2(2). I 

Let 

and let 

f i ( y , z ) =  1 , y, z E E ,  
- Y  1 

(1) 
w---- 1 . 

1 

Let u(y, z) be as in Section 1. Then we have 

z T 2 --- - y ~ ,  

(5.5) =w.diag(llh,-21z, z)u(-y lz,2). 

LEMMA 5.6: I f  Izl > qSm then ~(~15, 112 ) E Jm. 

Proof'. We have ~/5  --= - ( 1  -t- zl~)ly,  so i~/21 < iYi -1. If iYi -> q3,,~ then we are 

done, and if lyI < q3,~ then I~/21 = lyllizI < q-3m and we are also done. I 

The following Proposition characterizes the behavior of the Whit taker  

functions associated to Howe vectors on the open Bruhat  cell. In particular we 

see that  these Whit taker  functions are determined by their values on elements of 

the form t(a)w, a E E*, and by the central character of ~. 

PROPOSITION 5.7: Let (lr, V) and (r', V') be generic representations of G with 

the same centra /character  and define vm E V and v~ E V p as in Lemma 5.2. Let 

N be such an integer that Vm and v~ are Howe vectors for m > N. Let m > 3N 

and u p E U. Then 
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(a) Wv~ (b) = Wv- (b) for all b E B. 

(b) If  u' E Um then Wv,~(twu') = ¢(u')Wv,~(tw) for a11 t E T. 

(c) If  u' f~ V,~ then Wv,, (twu') = W , -  (twu') for all t E T. 

Proo~ (a) Every element b E B can be written in the form b = Ul -c.t(a),  where 

ul E U, and c E C, the center of G. Now we can use the fact that  7r and 7d have 

the same central character and Lemma 5.4 to prove (a). 

(b) follows from (2) of Lemma 5.2. 

To prove (c), assume u' = u(y', z') f[ Jm. We have two cases. First assume 

that  lY'I > qm. Since z' + ~ / =  - y ' ~ '  we have that  Iz'l > q2m. Since m > N,  it 

follows from Lemma 5.2(3) that  

(5.8) Wv.~(twu') = vol(Um) -1 [ WvN(twu'u)¢-l(u)du.  
d Um 

For u = u(y, z) E U,~, let ~ = u'u where ~ = u(?), 5). We have ~ = y + y'. Since 

u E Urn, we have lYl <- qm, hence lYl = ly'l > qm. From the same argument as 

above we have that  151 > q2m >_ qSg. Thus, using Lemma 5.6 and relation (5.5), 

we can attach to ~ a lower unipotent j E J~¢ such that wftj = b E B. We get 

Wv,, (twu'u) = WvN (twgj) = W,,,  (tb) = W,,  (tb) = We,, (tw~j) = W¢~ (twu'u). 

It follows from (5.8) that 

Wv,, (twu') = Wv- (twu') for all t E TH. 

For the second case, we have lY'I -< qm and [z' I > q3m. Looking again at (5.8) and 

at fi = u'u, we can see that ~, = z ~ - y ~  + z, hence ]~,] > q3m > q6N. Repeating 

the argument above we conclude that 

= for all  t e I 

6. Propert ies  of  the gamma factor 

This section contains our main result, Theorem 6.3. The analogues for GLn were 

proved by [J,S] and [He] using the Kirillov model for generic representations of 

GL,~. Our proof uses the properties of Howe vectors which we described above. 

We hope that  this method will be amenable to generalizations for other groups. 

We have obtained similar results for GSp(4) [B]. 
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For a set A C F we denote by TA the characteristic function of A. Let 

~,~,~(~, y) = Tp~ (~)T~+p. (y). 

A simple computation shows that 

~i,l(x, y) = qFi-l ¢(--x)T p[, (x)Tp; ,  (y). 

Let r C E be of the form r = zqT, z E F. Then 

~.~(~) =t (v~-~) .m(e(v~)) .m -1 -z  

Let X be a quasi-character of E*, and l = l(x) (cf. Section 1). Then 

f(&(r), ~Pi,l, X, s) = f ~i,z(zey, y)x(y)ly[*d*y 
. IF 

= i qF l i f ]ZlF<qFi]e]F 1, (6.1) 
[ o otherwise; 

335 

(6.2) 
f(wx(r),  ~i,l, ~-1 1 - s) = X(-v~)  f ~ ( -y , -yz )x - l (y ) ly l l -Sd*  y 

JF 
_ [ x(-vV)q~'-'  ~lF<q7 CF(V)X -l(y)lyl'-s~*y if IzlF <_ q~-', 
-- ~ ~ --i--l --1 1-Sd* x(- , / ; )qF ~lF_<q'l~l~ ¢~(y)x (y)l~l y if Izl > q~-'. ) 

The equality in (6.2) is in the sense of analytic continuation. Let 

c(s, X, ga) = flyl<q~X) X(y)¢f(y)MSd* y 

where X is a quasi-character of F* and CF is a character of F trivial on RF 
and nontrivial on WF1RF . This integral converges absolutely for Re(s) large and 

can be meromorphically continued. If l(x) > 0 then e(s, X, ¢) is nonzero, and if 

l(x ) = 0 then c(s, X, ~P) does not have a zero or a pole outside a finite number of 

values of q~.. (See, for example, [T] Lemma 5.1 and Theorem 5.5.) 

We now prove our main Theorem of this paper. 
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THEOREM 6.3: Let (It, V) and (lr t, V t) be generic representations o[ G with the 

same central character. 

(1) I f  7(s, 7r, X, CF, CE) = 7(s, 7r', X, Cf ,  CE) for all quasi-characters X of E*, 

then ~r is isomorphic to r ' .  

(2) I f  X is highly ramified, then 3'(s, ~r, X, Cv, CE) = y(s, 7r', X, CF, CE). 

A result similar to (1) was proved by Gelbart, Soudry and Rogawski [G,R,S]. 

They used global methods, i.e. the trace formula and theta correspondence. 

Proof." By Lemma 4.9 and Lemma 4.10, it is enough to prove Theorem 6.3 for 

the characters CF and CE that  we have fixed in the beginning of Section 5. Let 

)d)(~r, ¢) and )/V(Tr', ¢) be Whittaker models for 7r and 7r' respectively. Choose 

v E V and v' E Y' such that  Wv(1) --- W,,(1) = 1, Wv E W(lr,¢),  Wv, E 

)4)(7r',¢). Let N1 be an integer such that ~r(gN,)v = v and ~r'(gN1)v' = v'. Let 

N = 3N1 and vm E V, v~ E V', m _> N be Howe vectors associated with v and 

v' respectively, defined as in (5.3). Let Wv., E W(~r, ¢), Wv- E W(Tr', ¢) be the 

Whittaker functions associated with Vm and Vm,. By Proposition 5.7(a), we have 

W, m (b) = Wv-(b) for all b E S. 

Let dz be the normalized Haar measure on F extended to 

UH = {x(zx/~),z  E F}  ~ F, 

and dz be the normalized Haar measure on F extended to 

g/H = {&(Zx/e), Z E F} -- F. 

We shall decompose the Haar measure on H, hence the H invariant measure on 

UH \ H,  in two ways. We shall use the first for the integral defining Z(s,  W, ¢, X) 

and the second for the integral defining Z(1 - s ,  W, (~, :~-1). We first look at the 

open dense set of H consisting of elements 

x(yv~) t (a)&(zyq) ,  y , z  E F, a E E*. 

The Haar measure will be ]ai-ldyd*adz, where d*a is the Haar measure on E*. 

The quotient measure will be lal-ld*adz. 

For the second decomposition we look at the open dense set of H consisting of 

elements 

x(yvq)t (a)wx(zx/~) ,  y , z  E F, a E E*. 
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The Haar measure will be lal-ldyd*adz, and the quotient measure will be 

lal-l d* adz. 

Let X be a quasi-character of E* and let l = l(x ). Let m > N and m > l(X). 
We have 

= f Wv,~(h)f(s,h,~i,z,x)dh Z(s, W ~ ,  ~i,l, X) 
Ju H " H  

= rE" IF W[t(a>x(zv/-e>]x(a)lal'-'f(s'2(zv~)' ~'"x>dzd'a 

Using (6.1) this integral equals 

(6.4) qFZ /E* ~ZlF~q~'H -1 W'"[t(a)~c(zv~)]x(a)lalS-l dzd* a" 

If i is large enough, Izl < q~HF 1 implies ~(Zv~ ) e Jm. Hence, for such z 

Wvm [g2(zv~)] = Wv,~ (g) for all g e G 

(cf. Lemma 5.2 (2)). Hence (6.4) equals 

qFtV°l({&(zv/-e): ]zl ~-qF'})/E* Wv'~[t(a)]x(a)]a]Sd*a" 

Let c~i -- vol({&(zyre): Izl _< qFilelF1}). Using Lemma 5.4 we get that 

(6.5) Z(s, Wvm, ~i,l, X) = aiqF~ q~ m. 

The same argument gives 

(6.6) Z(s, W,-  , ~i,l, X) = aiqFlqE m" 

Notice that  we have proved here that Z(s, W, 9, X) is not identically zero for 

every X and s which concludes the proof of Theorem 4.7. 

We now use the functional equation in Corollary 4.8 together with (6.5) and 

(6.6) to get 

aiqFLqEm[~/(s, ~r, X, CF, CE) -- ~(S, •', X, CF, ~bE)] 

(6.7) = Z(1 - s, Wvm,~i,t,T(-1) - Z(1 - s, Wv-,~i,l,T(-1). 
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Fix 1 as above. Let i be large enough such that Iz~lE <_ q ~  implies IzlF _< 
q~-l. Using (6.2) we get 

Z(1 - s, W.., ,  ~)i,l, ) ~ - - 1 )  __ Z(1 - s, Wv-, ~)i,l, ~-1) 

= X(--V/-e)qFi-lc(1 -- s, X -1, CF) 

(6.8)./jflzvql~<q~m[Wvm(t(a)wx(v/-~z)) - Wv- ( t (a)wx(v~z))]x- l (5)H-~dzd * a 

+ f j(izvqj~>q~m(Wvm[t(a)wx(z)]- Wv;~[t(a)wx(z)]) 

(6.9) • f(1 - s, t(a)wx(z), ~2,,~, 2-1)lai-ldzd*a. 

Using Proposition 5.7 (c) we have that (6.9) vanishes. Using Proposition 5.7 

(b), we can see that (6.8) equals 

(6.10) ~s,z f W~, (t(a)w)]x-l(f)lall-~d*a 

where 

~s,x X(--V/-~)qFi-tc(1 -- s,x -1 CF)vOl{~(zv~): Izv~l < q 3 ~  : , --  E J "  

By Lemma 5.2 (3) we can write 

Wvm (t(a)w) - W v -  (t(a)w) = 

Vol(Um)-I Jufm [W..~ (t(a)wu) - W., N (t(a)wu)]¢ -1 (u)du 

and by Lemma 5.7 this integral equals 

vol(Um)-lvol(UN) [Ww, (t(a)w) - Wv, N (t(a)w)]. 

Using this, (6.10) and (6.7) we get 

(6.11) 

~N,~ b(s, - ,  x, CF, ¢~) - 7(s, ~', x, CF, ¢~)] 

: /[WvN (t(a)w) -- Wv~ ( t (a)~d))]~ - 1  ( 5 ) l a l - S d * a  

where AN,s = vol(Um)vOl(UN1)l~,~o~iqFlqE m, and does not have a zero or a pole 

for all but finitely many values of q8. 
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To prove (1) we notice that if 7(s, Tr, X ,¢F ,¢E  ) = 7(s, Tr' ,X,¢F,¢E ) for all 

quasi-characters X of E*, then we get 

(6.12) Wv~(t(a)w) = Wv,N(t(a)w ) for all a • E*. 

This is because (6.11) is a power series in q-S and the equality of the "),-factors 

implies that  the coefficients of this power series vanish. (6.12) now follows from 

standard Fourier analysis (i.e., inverse Mellin transform). Another application of 

Proposition 5.7 gives us 

WvN (g) = W~' N (g) for all g • G. 

Since 7r and 7r I are irreducible and since the respective Whittaker models give 

realizations for 7r and 7r I, we get that 7r ~- 7d. 

To prove (2) we notice that W, N (t(a)w) - W,  N (t(a)w) is a smooth function of 

a. So if X is highly ramified then (6.11) vanishes and we get 

~(s, ~, x, CF, ¢~) = ~(s, ~', ~, CF, ¢~). ' 

7. A g loba l  a p p l i c a t i o n  

In this section we give some indication on how to apply our local results to get 

a new proof of a strong multiplicity one theorem for the space of nondegenerate 

cuspidal automorphic representations of U(2, 1) (Theorem 7.2.13). A stronger 

version of this result can be obtained by using Theorem 13.3.5 in [Rog] and 

Theorem (c) in the introduction to [G,R,S]. Since we have not dealt at all with 

the archimedean primes we get a weaker version than what one can get from 

[Rog] and [G,R,S]. However, as we mentioned in Section 5, our methods seem 

amenable to generalizations. 

Before stating this theorem we shall provide the global functional equation. 

This functional equation was not included in [G,PS,1]. 

7.1. NONDEGENERATE REPRESENTATIONS. Let F be a number field, E a 

quadratic extension of F and e E F such that  E = F[x/7 ]. Let x ~ 5c be 

the nontrivial Galois automorphism of E over F,  and AF, AE, IF, IE the adeles 

and ideles of F and E respectively. We donte by A = AF. Let CF be a character 

of A F / F  and let •E be a character of A E / E  defined by 

CE(X) = CF (-~--~)x -- ~ for all x E AE. 
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We shall denote the standard absolute values on AF and AE by [[F and lIE 
respectively. 

Let V be a 3-dimensional vector space over E with a Hermitian form given by 

the matrix J (cf. Section 1). Let G = U(2, 1) be the group of automorphisms 

of V preserving J.  We shall use the same notation for the subgroups of G that 

were defined in Section 1. In particular, U is the unipotent radical of the upper 

triangular Borel subgroup of G. We let ¢ be a character of the unipotent radical 

U(A) obtained from ~bE as in Section 1. 

We define UH(AF) as in Section 1, i.e., {(10 } 
UH(AF) = 1 [Ix ~ A E , x  + ~ = O . 

Let (Tr, H,~) be an automorphic cuspidal representation of G(A) which we as- 

sume is realized in L2(G(F)) \ G(A)). 7r is called hypercuspidal if for all f E H~ 

we have 

(] f(xg)dx = 0 for almost E G(A). every g 
H(F) \ UH(A) 

We denote by L2,1 the orthocomplement in L 2 of all hypercusp forms. 

THEOREM 7 . 1 . 1  ([G,PS,1] Proposition 2.4): 

(1) Lo2,1 has multiplicity 1. 
(2) Each irreducible (r, H~) C L2o,1 has nonvanishing Fourier coefficients along 

the standard maximal unipotent subgroup, hence a global Whittaker model. 

We call such (~r, Hr)  nondegenerate. 

7.2 .  EISENSTEIN SERIES. The Eisenstein series appearing here are the ones 

alluded to in Remark 3.3 of [G,PS,1]. Notice that they are not the same as in 

(3.2.4) of [G,PS,1]. In studying them we follow [J] closely. 

Let S (A  2) be the space of Schwartz functions on A 2. For (I) E S(A~)  we 

define 

~(x, y) = ] ~(u, V)¢F(yu -- xv)dudv. 

Let • E S ( F  2) and s E C and X be a quasi-character of IF~F*. Let g E 

GL2(AF).  We set 

(7.2.1) ](s ,  g, ~, X) = JIf(g(~)(O' r)x(r)lri~d*r. 
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This integral converges for Re(s) large and can be meromorphically continued to 

the whole complex plane [J]. 

Let 

(7.2.2) k(s ,  g, ¢, x) = ] (s ,  ¢, x) 
,y 

where the summation is taken over BsL(F) \ SL2(F). 

PROPOSITION 7.2.3 ([J] Proposition 19.3): The series in (7.2.2) converges for 

Re(s) large and has meromorphic continuation to the whole plane. It satisfies 

the functional equation 

(7.2.4) /~(s, g, (I), X) = I det(g)llF-~Sx-l(det(g))F'( 1 - s, g, ~, X-l).  

Let H and S H be subgroups of G as in Section 1. Every h E H(AF)  can be 

written in the form 

(7.2.5) h = t(a). m(d(v~)), hi .  m(d(v~-l)) 

where a E IE and hi E SL2(AF). This follows from the local decomposition (2.4) 

for the primes that  do not split in E, and from decomposing the group GL2(F~) 

into a semi-direct product of SL2(F.) and F* when v is a prime of F that splits 

in E. Notice that  the decomposition (7.2.5) is not unique. 

For h e H(AF)  written in the form (7.2.5), (I) E S(A~) and X a quasi-character 

of IE*/E* we set 

f(s,  h, ~, X) = x(a)lalS](s, hl~, X). 

It is easy to see that  f is well defined (cf. Lemma 2.5). We let 

(7.2.6) E(s, h, (~, X) = E f(s, 7h, ~, X) 
"7 

where 9' is in the set of representatives for BH(F) \ H(F). 

PROPOSITION 7.2.7: The series in (7.2.6) converges for Re(s) large and has mero- 

morphic continuation to the whole plane. It satisfies the functional equation 

E(s,g,~,X) = E(1 - s ,g ,~ ,~- l ) .  



342 E .M.  BARUCH Isr. J. Math. 

Proof: We let eU {WX(v~Z): z e F} be representatives of BH(F) \ H(F) where 

_V,~ -1  

Let h C/-/(A) and write h = t(a) .  m(d(x/~)), hi" m(d(v~- l ) )  as in (7.2.5). Let 

(o 1) z c F .  ~/=wx(x/~z) and ~ =  1 - z  ' 

We have 

( 0 wx( x/~z)h = t(a) . m( d( v/~) ) . m -ad  

It follows that 

hence 

(7.2.8) 

(aa)-l-z) " h i -m(d(x /~- l ) ) .  

f(s,  ~h, ~2, X) = x(a)lal ~ :(s, z~, d(aa)hl ~2, X), 

E(s, h, ~, X) = x(a)lalSE(s, d(ah), hl~, X). 

The convergence of E now follows from the convergence of E. For the functional 

equation we have 

(7.2.9) E(s,d(a~t),hl~,X) --la11-28X-l(a~t)E(1 - s,d(a~),hl~P,~-l). 

Combining (7.2.8) and (7.2.9) we get the desired functional equation. | 

Let (r ,  H~) be a nondegenerate cuspidal automorphic representation of G(A). 

For f C H~ we define 

(7.2.10) L(s, f, ~, X) = f f (h)E(s,  h, ~, x)dh. 
JH (F) \ H(A) 

(See (3.2.1) and remark (3.3) in [G,PS,1].) Proposition 7.2.3 gives us the func- 

tional equation for L(s, f, ~, X): 

(7.2.11) L(s , f ,  ~,X) = L(1 - s , f ,  ~,~(-1). 
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Using proposition (3.5) in [G,PS,1] we get 

(7.2.12) L(s, f,  (I), X) = /Vn(A)  
H(A)  

where 

W~(h) f ( s ,h ,~ , x )dh  

W~(h) = JV[(F) \ V(h) f (ug)¢- I  (u)du. 

Expressing the integral in (7.2.12) as an Euler product as in Proposition (3.6) of 

[G,PS,1] we get that L(s, h, ~, X) is a product of the local zeta integrals defined 

in Section 2 (or a sum of such products). 

Notice that by the results of Section 3, we can define local L-factors L(s, ~r,, Xv) 

for every non-archimedean place v of F and a place v of E lying above v. In 

what follows we shall assume that we can do so also for the archimedean places. 

Then we can define a global L-function L(s, 7r, X)- The functional equation for 

L(s, ~r, X) (see [G,PS,1] (5.1)) will then come from (7.2.11), (7.2.12) and the local 

functional equation. We hope to do that in a future publication. (We need much 

less in order to prove the following result. All we need is (7.2.11), (7.2.12) and a 

nonvanishing result for the archimidean integrals.) The following Theorem is due 

to Gelbart, Rogawski and Soudry [Rog],[G,PS,1]. We bring here a new proof. 

THEOREM 7.2.13: Let rc = @Ir~ and a = ~ a ~  be cuspidal nondegenerate 

automorphic representations of U(2, 1)(A). Assume that there exist a ~nite set 

S of nonarchimidean valuations of F such that ~r. ~- a, for all v ~ S. Then 

7 r = o .  

Proo~ Let Vo be in S and let vo be a place of E lying above v0. For every 

quasi-character X of Evo we can find a global character a of IE/E* such that  av 

is highly ramified for any v lying above S, v ~ v0 and such that avo = X (lemma 

12.5 in [J,L]). 

Looking at the functional equations for L(s, 7r, a) and L(s, a, a) and expressing 

these functional equations in the form of Euler products as in [G,PS,1], we can 

see that  all but a finite number of Euler factors are the same, hence we get the 

following equality (see [Ca] or [G], Theorem 5.14 for a similar argument): 

]--[ L ( 1 -  s, # , ,  ~- l )e (s ,  Tr,,a,,~b,) = ]--[ L ( 1 - s , 5 , , ~ v l ) e ( s , a , , a , , ¢ v )  

Here ~ is the cotragredient of 7r~. This equality is the same as 

yES yES 
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When v splits in E,  the local group is GL3(F~). It  follows from ([G,PS,1] 

3.7) tha t  "y(s, lrv, a~, ¢~) is just the gamma factor attached to GL3 × GL1, and 

we have an analogous result to Theorem 6.3 (see [J,PS,S 1] Proposition 5.1 and 

Proposit ion 7.5.2). Since av is highly ramified except at v0 we can use Theorem 

6.3 (1) and its analogue for GL3 to get 

7(s, 7r~o X, ¢~o) = 7(s, a~o, X, ¢~o) for all quasi-characters X of E* V 0 

where X = avo is an arbitrarily chosen quasi-character of E* o. Using a density 

argument we can show that  the central character of lr is the same as the cen- 

tral  character of a,  thus the central character of ~r~ o is the same as the central 

character of a~ o. Hence, by Theorem 6.3 (2) or its analogue for GL3, we have 

~r~ o ~- a~ o . Now we use the multiplicity one theorem in Theorem 7.1.1 to conclude 

tha t  7r = a. | 
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